Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89.873
Filtrar
1.
Biomolecules ; 14(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38540733

RESUMO

Neuropeptides are the main regulators of physiological, developmental, and behavioural processes in insects. Three insect neuropeptide systems, the adipokinetic hormone (AKH), corazonin (Crz), and adipokinetic hormone/corazonin-related peptide (ACP), and their cognate receptors, are related to the vertebrate gonadotropin (GnRH) system and form the GnRH superfamily of peptides. In the current study, the two signalling systems, AKH and ACP, of the yellow fever mosquito, Aedes aegypti, were comparatively investigated with respect to ligand binding to their respective receptors. To achieve this, the solution structure of the hormones was determined by nuclear magnetic resonance distance restraint methodology. Atomic-scale models of the two G protein-coupled receptors were constructed with the help of homology modelling. Thereafter, the binding sites of the receptors were identified by blind docking of the ligands to the receptors, and models were derived for each hormone system showing how the ligands are bound to their receptors. Lastly, the two models were validated by comparing the computational results with experimentally derived data available from the literature. This mostly resulted in an acceptable agreement, proving the models to be largely correct and usable. The identification of an antagonist versus a true agonist may, however, require additional testing. The computational data also explains the exclusivity of the two systems that bind only the cognate ligand. This study forms the basis for further drug discovery studies.


Assuntos
Aedes , Hormônios de Inseto , Neuropeptídeos , Oligopeptídeos , Ácido Pirrolidonocarboxílico/análogos & derivados , Febre Amarela , Animais , Ligantes , Modelos Químicos , Filogenia , Evolução Molecular , Neuropeptídeos/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo
2.
PLoS One ; 19(3): e0299039, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427648

RESUMO

The chemical etching of germanium in Br2 environment at elevated temperatures is described by the Michaelis-Menten equation. The validity limit of Michaelis-Menten kinetics is subjected to the detailed analysis. The steady-state etching rate requires synergy of two different process parameters. High purity gas should be directed to the substrate on which intermediate reaction product does not accumulate. Theoretical calculations indicate that maximum etching rate is maintained when 99.89% of the germanium surface is covered by the reaction product, and 99.9999967% of the incident Br2 molecules are reflected from the substrate surface. Under these conditions, single GeBr2 molecule is formed after 30 million collisions of Br2 molecules with the germanium surface.


Assuntos
Germânio , Modelos Químicos , Algoritmos , Cinética , Física
3.
Food Chem ; 446: 138849, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460280

RESUMO

Polycyclic aromatic hydrocarbons (PAHs), prominent carcinogens formed during food processing, pose health risks through long-term consumption. This study focuses on 16 priority PAHs in the European Union, investigating their formation during pyrolysis. Glucose, amino acids and fatty acids are important food nutrients. To further explore whether these nutrients in food form PAHs during heating, a single chemical model method was used to heat these nutrients respectively, and GC-MS/MS was used to identify and quantify the obtained components. Glucose is the most basic nutrient in food, so the influence of water, pH, temperature and other factors on the formation of PAHs was studied in the glucose model. At the same time, the models of amino acids and fatty acids were used to assist in improving the entire nutrient research system. According to our results, some previously reported mechanisms of PAHs formation by fatty acids heating were confirmed. In addition, glucose and amino acids could also produce many PAHs after heating, and some conclusions were improved by comparing the intermediates of PAHs from three types of nutrients.


Assuntos
Aminoácidos , Hidrocarbonetos Policíclicos Aromáticos , Ácidos Graxos , Glucose , Modelos Químicos , Espectrometria de Massas em Tandem , Nutrientes
4.
J Chem Inf Model ; 64(3): 712-723, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38301279

RESUMO

We present a quantum mechanical/machine learning (ML) framework based on random forest to accurately predict the pKas of complex organic molecules using inexpensive density functional theory (DFT) calculations. By including physics-based features from low-level DFT calculations and structural features from our connectivity-based hierarchy (CBH) fragmentation protocol, we can correct the systematic error associated with DFT. The generalizability and performance of our model are evaluated on two benchmark sets (SAMPL6 and Novartis). We believe the carefully curated input of physics-based features lessens the model's data dependence and need for complex deep learning architectures, without compromising the accuracy of the test sets. As a point of novelty, our work extends the applicability of CBH, employing it for the generation of viable molecular descriptors for ML.


Assuntos
Modelos Químicos , Teoria Quântica , Termodinâmica , Aprendizado de Máquina
5.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339009

RESUMO

Recent advances in protein structure prediction, driven by AlphaFold 2 and machine learning, demonstrate proficiency in static structures but encounter challenges in capturing essential dynamic features crucial for understanding biological function. In this context, homology-based modeling emerges as a cost-effective and computationally efficient alternative. The MODELLER (version 10.5, accessed on 30 November 2023) algorithm can be harnessed for this purpose since it computes intermediate models during simulated annealing, enabling the exploration of attainable configurational states and energies while minimizing its objective function. There have been a few attempts to date to improve the models generated by its algorithm, and in particular, there is no literature regarding the implementation of an averaging procedure involving the intermediate models in the MODELLER algorithm. In this study, we examined MODELLER's output using 225 target-template pairs, extracting the best representatives of intermediate models. Applying an averaging procedure to the selected intermediate structures based on statistical potentials, we aimed to determine: (1) whether averaging improves the quality of structural models during the building phase; (2) if ranking by statistical potentials reliably selects the best models, leading to improved final model quality; (3) whether using a single template versus multiple templates affects the averaging approach; (4) whether the "ensemble" nature of the MODELLER building phase can be harnessed to capture low-energy conformations in holo structures modeling. Our findings indicate that while improvements typically fall short of a few decimal points in the model evaluation metric, a notable fraction of configurations exhibit slightly higher similarity to the native structure than MODELLER's proposed final model. The averaging-building procedure proves particularly beneficial in (1) regions of low sequence identity between the target and template(s), the most challenging aspect of homology modeling; (2) holo protein conformations generation, an area in which MODELLER and related tools usually fall short of the expected performance.


Assuntos
Algoritmos , Proteínas , Proteínas/química , Conformação Proteica , Simulação de Dinâmica Molecular , Modelos Químicos , Software
6.
J Chem Inf Model ; 64(4): 1107-1111, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38346241

RESUMO

There has been a growing recognition of the need for diversity and inclusion in scientific fields. This trend is reflected in the Journal of Chemical Information and Modeling (JCIM), where there has been a gradual increase in the number of papers that embrace this diversity. In this viewpoint, we analyze the evolution of the profile of papers published in JCIM from 1996 to 2022 addressing three diversity criteria, namely interdisciplinarity, geographic and gender distributions, and their impact on citation patterns. We used natural language processing tools for the classification of main areas and gender, as well as metadata, to analyze a total of 7384 articles published in the categories of research articles, reviews, and brief reports. Our analyses reveal that the relative number of articles and citation patterns are similar across the main areas within the scope of JCIM, and international collaboration and publications encompassing two to three research areas attract more citations. The percentage of female authors has increased from 1996 (less than 20%) to 2022 (more than 32%), indicating a positive trend toward gender diversity in almost all geographic regions, although the percentage of publications by single female authors remains lower than 20%. Most JCIM citations come from Europe and the Americas, with a tendency for JCIM papers to cite articles from the same continent. Furthermore, there is a correlation between the gender of the authors, as JCIM manuscripts authored by females are more likely to be cited by other JCIM manuscripts authored by females.


Assuntos
Modelos Químicos , Processamento de Linguagem Natural , Feminino , Humanos
7.
J Biol Chem ; 300(3): 105783, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395309

RESUMO

Poly(ethylene terephthalate) (PET) is a major plastic polymer utilized in the single-use and textile industries. The discovery of PET-degrading enzymes (PETases) has led to an increased interest in the biological recycling of PET in addition to mechanical recycling. IsPETase from Ideonella sakaiensis is a candidate catalyst, but little is understood about its structure-function relationships with regards to PET degradation. To understand the effects of mutations on IsPETase productivity, we develop a directed evolution assay to identify mutations beneficial to PET film degradation at 30 °C. IsPETase also displays enzyme concentration-dependent inhibition effects, and surface crowding has been proposed as a causal phenomenon. Based on total internal reflectance fluorescence microscopy and adsorption experiments, IsPETase is likely experiencing crowded conditions on PET films. Molecular dynamics simulations of IsPETase variants reveal a decrease in active site flexibility in free enzymes and reduced probability of productive active site formation in substrate-bound enzymes under crowding. Hence, we develop a surface crowding model to analyze the biochemical effects of three hit mutations (T116P, S238N, S290P) that enhanced ambient temperature activity and/or thermostability. We find that T116P decreases susceptibility to crowding, resulting in higher PET degradation product accumulation despite no change in intrinsic catalytic rate. In conclusion, we show that a macromolecular crowding-based biochemical model can be used to analyze the effects of mutations on properties of PETases and that crowding behavior is a major property to be targeted for enzyme engineering for improved PET degradation.


Assuntos
Burkholderiales , Hidrolases , Polietilenotereftalatos , Hidrolases/química , Hidrolases/genética , Hidrolases/metabolismo , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Reciclagem , Cinética , Burkholderiales/enzimologia , Modelos Químicos
8.
J Chem Phys ; 160(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38165100

RESUMO

Recent experiments by Brückner et al. [Science 380, 1357 (2023)] have observed an anomalous chain length dependence of the time of near approach of widely separated pairs of genomic elements on transcriptionally active chromosomal DNA. In this paper, I suggest that the anomaly may have its roots in internal friction between neighboring segments on the DNA backbone. The basis for this proposal is a model of chain dynamics formulated in terms of a continuum scaled Brownian walk (sBw) of polymerization index N. The sBw is an extension of the simple Brownian walk model widely used in path integral calculations of polymer properties, differing from it in containing an additional parameter H (the Hurst index) that can be tuned to produce varying degrees of correlation between adjacent monomers. A calculation using the sBw of the mean time τc for chain closure predicts-under the Wilemski-Fixman approximation for diffusion-controlled reactions-that at early times, τc varies as the 2/3 power of N, in close agreement with the findings of the Brückner et al. study. Other scaling relations of that study, including those related to the probability of loop formation and the mean square displacements of terminal monomers, are also satisfactorily accounted for by the model.


Assuntos
Modelos Químicos , Polímeros , Simulação por Computador , Fricção , DNA
9.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279359

RESUMO

HDAC11 is a class IV histone deacylase with no crystal structure reported so far. The catalytic domain of HDAC11 shares low sequence identity with other HDAC isoforms, which makes conventional homology modeling less reliable. AlphaFold is a machine learning approach that can predict the 3D structure of proteins with high accuracy even in absence of similar structures. However, the fact that AlphaFold models are predicted in the absence of small molecules and ions/cofactors complicates their utilization for drug design. Previously, we optimized an HDAC11 AlphaFold model by adding the catalytic zinc ion and minimization in the presence of reported HDAC11 inhibitors. In the current study, we implement a comparative structure-based virtual screening approach utilizing the previously optimized HDAC11 AlphaFold model to identify novel and selective HDAC11 inhibitors. The stepwise virtual screening approach was successful in identifying a hit that was subsequently tested using an in vitro enzymatic assay. The hit compound showed an IC50 value of 3.5 µM for HDAC11 and could selectively inhibit HDAC11 over other HDAC subtypes at 10 µM concentration. In addition, we carried out molecular dynamics simulations to further confirm the binding hypothesis obtained by the docking study. These results reinforce the previously presented AlphaFold optimization approach and confirm the applicability of AlphaFold models in the search for novel inhibitors for drug discovery.


Assuntos
Modelos Químicos , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Domínio Catalítico , Desenho de Fármacos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química
10.
J Mol Biol ; 436(4): 168444, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38218366

RESUMO

Many examples are known of regions of intrinsically disordered proteins that fold into α-helices upon binding to their targets. These helical binding motifs (HBMs) can be partially helical also in the unbound state, and this so-called residual structure can affect binding affinity and kinetics. To investigate the underlying mechanisms governing the formation of residual helical structure, we assembled a dataset of experimental helix contents of 65 peptides containing HBM that fold-upon-binding. The average residual helicity is 17% and increases to 60% upon target binding. The helix contents of residual and target-bound structures do not correlate, however the relative location of helix elements in both states shows a strong overlap. Compared to the general disordered regions, HBMs are enriched in amino acids with high helix preference and these residues are typically involved in target binding, explaining the overlap in helix positions. In particular, we find that leucine residues and leucine motifs in HBMs are the major contributors to helix stabilization and target-binding. For the two model peptides, we show that substitution of leucine motifs to other hydrophobic residues (valine or isoleucine) leads to reduction of residual helicity, supporting the role of leucine as helix stabilizer. From the three hydrophobic residues only leucine can efficiently stabilize residual helical structure. We suggest that the high occurrence of leucine motifs and a general preference for leucine at binding interfaces in HBMs can be explained by its unique ability to stabilize helical elements.


Assuntos
Proteínas Intrinsicamente Desordenadas , Leucina , Proteínas Intrinsicamente Desordenadas/química , Leucina/química , Peptídeos/química , Estrutura Secundária de Proteína , Motivos de Aminoácidos , Conjuntos de Dados como Assunto , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Modelos Químicos
11.
J Cell Biol ; 223(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38252080

RESUMO

The compartmentalization of the plasma membrane (PM) is a fundamental feature of cells. The diffusivity of membrane proteins is significantly lower in biological than in artificial membranes. This is likely due to actin filaments, but assays to prove a direct dependence remain elusive. We recently showed that periodic actin rings in the neuronal axon initial segment (AIS) confine membrane protein motion between them. Still, the local enrichment of ion channels offers an alternative explanation. Here we show, using computational modeling, that in contrast to actin rings, ion channels in the AIS cannot mediate confinement. Furthermore, we show, employing a combinatorial approach of single particle tracking and super-resolution microscopy, that actin rings are close to the PM and that they confine membrane proteins in several neuronal cell types. Finally, we show that actin disruption leads to loss of compartmentalization. Taken together, we here develop a system for the investigation of membrane compartmentalization and show that actin rings compartmentalize the PM.


Assuntos
Actinas , Membrana Celular , Canais Iônicos , Actinas/química , Membrana Celular/química , Canais Iônicos/química , Animais , Ratos , Neurônios , Modelos Químicos
12.
Methods ; 221: 18-26, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040204

RESUMO

Drug-induced liver injury (DILI) is a significant issue in drug development and clinical treatment due to its potential to cause liver dysfunction or damage, which, in severe cases, can lead to liver failure or even fatality. DILI has numerous pathogenic factors, many of which remain incompletely understood. Consequently, it is imperative to devise methodologies and tools for anticipatory assessment of DILI risk in the initial phases of drug development. In this study, we present DMFPGA, a novel deep learning predictive model designed to predict DILI. To provide a comprehensive description of molecular properties, we employ a multi-head graph attention mechanism to extract features from the molecular graphs, representing characteristics at the level of compound nodes. Additionally, we combine multiple fingerprints of molecules to capture features at the molecular level of compounds. The fusion of molecular fingerprints and graph features can more fully express the properties of compounds. Subsequently, we employ a fully connected neural network to classify compounds as either DILI-positive or DILI-negative. To rigorously evaluate DMFPGA's performance, we conduct a 5-fold cross-validation experiment. The obtained results demonstrate the superiority of our method over four existing state-of-the-art computational approaches, exhibiting an average AUC of 0.935 and an average ACC of 0.934. We believe that DMFPGA is helpful for early-stage DILI prediction and assessment in drug development.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Modelos Químicos , Humanos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Desenvolvimento de Medicamentos , Aprendizado Profundo
13.
Nucleic Acids Res ; 52(1): 22-48, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37994702

RESUMO

Closing each strand of a DNA duplex upon itself fixes its linking number L. This topological condition couples together the secondary and tertiary structures of the resulting ccDNA topoisomer, a constraint that is not present in otherwise identical nicked or linear DNAs. Fixing L has a range of structural, energetic and functional consequences. Here we consider how L having different integer values (that is, different superhelicities) affects ccDNA molecules. The approaches used are primarily theoretical, and are developed from a historical perspective. In brief, processes that either relax or increase superhelicity, or repartition what is there, may either release or require free energy. The energies involved can be substantial, sufficient to influence many events, directly or indirectly. Here two examples are developed. The changes of unconstrained superhelicity that occur during nucleosome attachment and release are examined. And a simple theoretical model of superhelically driven DNA structural transitions is described that calculates equilibrium distributions for populations of identical topoisomers. This model is used to examine how these distributions change with superhelicity and other factors, and applied to analyze several situations of biological interest.


Assuntos
DNA Super-Helicoidal , DNA , DNA/química , Conformação de Ácido Nucleico , Nucleossomos , Modelos Químicos
14.
Mol Inform ; 43(1): e202300288, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38010610

RESUMO

In drug discovery, chemical language models (CLMs) originating from natural language processing offer new opportunities for molecular design. CLMs have been developed using recurrent neural network (RNN) or transformer architectures. For the predictive performance of RNN-based encoder-decoder frameworks and transformers, attention mechanisms play a central role. Among others, emerging application areas for CLMs include constrained generative modeling and the prediction of chemical reactions or drug-target interactions. Since CLMs are applicable to any compound or target data that can be presented in a sequential format and tokenized, mappings of different types of sequences can be learned. For example, active compounds can be predicted from protein sequence motifs. Novel off-the-beat-path applications can also be considered. For example, analogue series from medicinal chemistry can be perceived and represented as chemical sequences and extended with new compounds using CLMs. Herein, methodological features of CLMs and different applications are discussed.


Assuntos
Química Farmacêutica , Descoberta de Drogas , Fontes de Energia Elétrica , Modelos Químicos , Processamento de Linguagem Natural
15.
Bioinformatics ; 39(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37991847

RESUMO

MOTIVATION: The two strands of the DNA double helix locally and spontaneously separate and recombine in living cells due to the inherent thermal DNA motion. This dynamics results in transient openings in the double helix and is referred to as "DNA breathing" or "DNA bubbles." The propensity to form local transient openings is important in a wide range of biological processes, such as transcription, replication, and transcription factors binding. However, the modeling and computer simulation of these phenomena, have remained a challenge due to the complex interplay of numerous factors, such as, temperature, salt content, DNA sequence, hydrogen bonding, base stacking, and others. RESULTS: We present pyDNA-EPBD, a parallel software implementation of the Extended Peyrard-Bishop-Dauxois (EPBD) nonlinear DNA model that allows us to describe some features of DNA dynamics in detail. The pyDNA-EPBD generates genomic scale profiles of average base-pair openings, base flipping probability, DNA bubble probability, and calculations of the characteristically dynamic length indicating the number of base pairs statistically significantly affected by a single point mutation using the Markov Chain Monte Carlo algorithm. AVAILABILITY AND IMPLEMENTATION: pyDNA-EPBD is supported across most operating systems and is freely available at https://github.com/lanl/pyDNA_EPBD. Extensive documentation can be found at https://lanl.github.io/pyDNA_EPBD/.


Assuntos
DNA , Modelos Químicos , Simulação por Computador , DNA/química , Software , Pareamento de Bases , Conformação de Ácido Nucleico
16.
J Math Biol ; 88(1): 5, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38017080

RESUMO

Turing patterns arising from reaction-diffusion systems such as epidemic, ecology or chemical reaction models are an important dynamic property. Parameter identification of Turing patterns in spatial continuous and networked reaction-diffusion systems is an interesting and challenging inverse problem. The existing algorithms require huge account operations and resources. These drawbacks are amplified when apply them to reaction-diffusion systems on large-scale complex networks. To overcome these shortcomings, we present a new least squares algorithm which is rooted in the fact that Turing patterns are the stationary solutions of reaction-diffusion systems. The new algorithm is time independent, it translates the parameter identification problem into a low dimensional optimization problem even a low order linear algebra equations. The numerical simulations demonstrate that our algorithm has good effectiveness, robustness as well as performance.


Assuntos
Algoritmos , Modelos Biológicos , Análise dos Mínimos Quadrados , Ecologia , Modelos Químicos , Difusão
17.
Comput Biol Med ; 167: 107691, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37976819

RESUMO

With the wide application of deep learning in Drug Discovery, deep generative model has shown its advantages in drug molecular generation. Generative adversarial networks can be used to learn the internal structure of molecules, but the training process may be unstable, such as gradient disappearance and model collapse, which may lead to the generation of molecules that do not conform to chemical rules or a single style. In this paper, a novel method called STAGAN was proposed to solve the difficulty of model training, by adding a new gradient penalty term in the discriminator and designing a parallel layer of batch normalization used in generator. As an illustration of method, STAGAN generated higher valid and unique molecules than previous models in training datasets from QM9 and ZINC-250K. This indicates that the proposed method can effectively solve the instability problem in the model training process, and can provide more instructive guidance for the further study of molecular graph generation.


Assuntos
Aprendizado Profundo , Descoberta de Drogas , Modelos Químicos
18.
J Comput Aided Mol Des ; 37(12): 765-789, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37878216

RESUMO

In this study, we use machine learning algorithms with QM-derived COSMO-RS descriptors, along with Morgan fingerprints, to predict the absolute solubility of drug-like compounds. The QM-derived descriptors account for the molecular properties of the solute, i.e., the solute-solute interactions in an artificial-liquid-state (super-cooled liquid), and the solute-solvent interactions in solution. We employ two main approaches to predict solubility: (i) a hypothetical pathway that involves melting the solute at room temperature T = T¯ ([Formula: see text]) and mixing the artificially liquid solute into the solvent ([Formula: see text]). In this approach [Formula: see text] is predicted using machine learning models, and the [Formula: see text] is obtained from COSMO-RS calculations; (ii) direct solubility prediction using machine learning algorithms. The models were trained on a large number of Bayer in-house compounds for which water solubility data is available at physiological pH of 6.5 and ambient temperature. We also evaluated our models using external datasets from a solubility challenge. Our models present great improvements compared to the absolute solubility prediction with the QSAR model for the artificial liquid state as implemented in the COSMOtherm software, for both in-house and external datasets. We are furthermore able to demonstrate the superiority of QM-derived descriptors compared to cheminformatics descriptors. We finally present low-cost alternative models using fragment-based COSMOquick calculations with only marginal reduction in the quality of predicted solubility.


Assuntos
Modelos Químicos , Água , Solubilidade , Água/química , Aprendizado de Máquina , Solventes/química
19.
J Chem Phys ; 159(15)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37843064

RESUMO

Classical theories of enzyme inhibition kinetics predict a monotonic decrease in the mean catalytic activity with the increase in inhibitor concentration. The steady-state result, derived from deterministic mass action kinetics, ignores molecular noise in enzyme-inhibition mechanisms. Here, we present a stochastic generalization of enzyme inhibition kinetics to mesoscopic enzyme concentrations by systematically accounting for molecular noise in competitive and uncompetitive mechanisms of enzyme inhibition. Our work reveals an activator-inhibitor duality as a non-classical effect in the transient regime in which inhibitors tend to enhance enzymatic activity. We introduce statistical measures that quantify this counterintuitive response through the stochastic analog of the Lineweaver-Burk plot that shows a merging of the inhibitor-dependent velocity with the Michaelis-Menten velocity. The statistical measures of mean and temporal fluctuations - fractional enzyme activity and waiting time correlations - show a non-monotonic rise with the increase in inhibitors before subsiding to their baseline value. The inhibitor and substrate dependence of the fractional enzyme activity yields kinetic phase diagrams for non-classical activator-inhibitor duality. Our work links this duality to a molecular memory effect in the transient regime, arising from positive correlations between consecutive product turnover times. The vanishing of memory in the steady state recovers all the classical results.


Assuntos
Enzimas , Modelos Químicos , Cinética , Enzimas/química
20.
Molecules ; 28(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37836643

RESUMO

Isoxazolo[3,4-d] pyridazinones ([3,4-d]s) were previously shown to have selective positive modulation at the metabotropic glutamate receptor (mGluR) Subtypes 2 and 4, with no functional cross-reactivity at mGluR1a, mGluR5, or mGluR8. Additional analogs were prepared to access more of the allosteric pocket and achieve higher binding affinity, as suggested by homology modeling. Two different sets of analogs were generated. One uses the fully formed [3,4-d] with an N6-aryl with and without halogens. These underwent successful selective lateral metalation and electrophilic quenching (LM&EQ) at the C3 of the isoxazole. In a second set of analogs, a phenyl group was introduced at the C4 position of the [3,4-d] ring via a condensation of 4-phenylacetyl-3-ethoxcarbonyl-5-methyl isoxazole with the corresponding hydrazine to generate the 3,4-ds 2b and 2j to 2n.


Assuntos
Modelos Químicos , Simulação de Dinâmica Molecular , Regulação Alostérica , Benzamidas , Isoxazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...